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Large-amplitude oscillations of drops and bubbles immersed in an immiscible liquid
host have been investigated using ultrasonic radiation pressure techniques. Single
levitated or trapped drops and bubbles with effective radius between 0.2 and 0.8 cm
have been driven into resonant shape oscillations of the first few orders. The direct
coupling of driven drop shape oscillations between the axisymmetric l = 6 and l = 3
modes has been documented as well as the interaction between axisymmetric and
non-axisymmetric l = 3 and l = 2 modes. Effective resonant energy transfer from
higher- to lower-order modes has been observed together with a much less efficient
energy transfer in the reverse direction. The first three resonant modes for bubbles
trapped in water have also been excited, and mode coupling during driven and free-
decaying oscillations has been measured. The evidence gathered thus far indicates
that efficient drop resonant coupling between a higher- and a lower-order mode
occurs when the characteristic frequency of the latter mode roughly coincides with a
harmonic resonance.

1. Introduction
Single drop and bubble dynamics are associated with multi-component and multi-

phase dispersions occurring in nature and in industrial processes involving liquid–
liquid extraction, distillation, or direct contact heat transfer. An improved understand-
ing of the details of the often nonlinear interfacial dynamics should lead to a more
accurate modelling of the relevant large-scale processes. In addition, a fundamental
understanding of the dynamics will favourably impact the development of methods
for the accurate determination of the physico-chemical properties controlling the
motion of the drops and bubbles.

The levitation or trapping of single isolated fluid particles allows the control of their
position, of their mechanical stimuli, and the accurate measurement of their response.
By controlling the time variations of electric or acoustic force fields, contactless
static and time-varying shape distortions can be induced and analysed both in the
transient as well as steady-state regimes. Practical interest in the deformation and
shape oscillations of drops and bubbles immersed in liquid hosts arises because
of their impact on particle size distribution in large-scale fluid dispersion systems
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through fission and coalescence (Blass 1990; Wright & Ramkrishna 1994). The effects
of shape deformation and oscillations on the efficiency of mass and heat transport
have also been investigated in the past using translating fluid particles in a liquid or
gaseous host (Kawalski & Ziolkowski 1981; Kaji et al. 1985; Scott, Basaran & Byers
1990). The observed increase in the transport rates of oscillating drops cannot be
attributed to the increase in surface area alone. Rather, the details of the dynamics
of the shape oscillations and their impact on the fluid circulation around and inside
the drops or bubbles are believed to play the primary role in this enhancement.

Because of inter-particle collision and flow perturbations, the shape deformations
of individual droplets and bubbles in dispersions are often large, and the resulting
shape oscillations are consequently nonlinear. Theories based on small-amplitude
approximations (Rayleigh 1879; Lamb 1881; Miller & Scriven 1968; Prosperetti
1980; Marston 1980) cannot accurately describe the details of the dynamics in this
amplitude range. The fundamental characteristics of nonlinear inviscid drop shape
oscillations have been addressed by Tsamopoulos & Brown (1984) through multiple-
time-scale expansion and by Natarajan & Brown (1986) who derived the equations
describing the nonlinear interaction of resonant modes by using the variational
principle for the Lagrangian of the oscillatory motion. The quadratic and third-order
couplings of axisymmetric resonant modes of charged drops freely suspended in a
tenuous medium (vacuum or gas) were considered in the former study, and uncharged
drops were treated by the latter authors. The principal predictions obtained were the
quadratic decrease of the drop and bubble resonant mode frequencies as a function
of the oscillation amplitude, and the resonant coupling of modes whose frequencies
are integer multiples. Such modal interactions have been characterized by either
aperiodic or periodic modulations of the amplitude and phase of the interacting
modes. Experimental corroboration has been obtained for the amplitude dependence
of the fundamental mode resonance frequency for drops suspended in liquid and in
air, but no evidence for soft nonlinearity in the resonance frequency has yet been
provided for the case of bubbles in liquids. Similarly, no experimental evidence for
nonlinear modal coupling has yet been presented for drops and bubbles immersed in
a liquid. In this paper, we will address some of these particular issues by presenting
experimental observations of modal coupling of the resonant modes of both drops
and bubbles immersed in a liquid host and driven into shape oscillation by the
modulation of the ultrasonic radiation pressure.

2. Experimental approach
In this work, we use a primary ultrasonic standing wave to support a drop or trap a

bubble against gravity, and we modulate this wave at a vastly lower frequency to drive
the drop into shape oscillations. A technique developed for previous experimental
studies of linear and nonlinear drop (Marston & Apfel 1979; Trinh, Zwern &
Wang 1982; Trinh & Wang 1982) and bubble shape oscillations (Asaki, Marston
& Trinh 1993) has thus been used to gather the data reported in this paper. This
particular implementation of the acoustic levitation method has thus been previously
described in detail, and only a cursory discussion will be presented here. As shown
in figure 1 a liquid-filled cell with square cross-section is excited into resonance
through direct coupling to the piezo-electric transducer attached at its bottom. A
specific three-dimensional ultrasonic standing wave in the liquid column is excited
near the fundamental longitudinal (length) mode of the transducer (around 22.5 kHz)
or at one of its odd harmonics (around 66 kHz). The empirical frequency matching
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Figure 1. Schematic description of the experimental apparatus. A Lucite square-cross-section cavity
has been machined to allow the mounting of a resonant piezoelectric transducer at the bottom of
the chamber. This transducer is driven by a function generator and amplifier in order to establish
a three-dimensional standing wave in the water-filled chamber. This standing wave is amplitude
modulated in order to modulate the acoustic radiation pressure to drive the levitated drops and
trapped bubbles into shape oscillations. The data described in this paper have been acquired
through the analysis of digitized frames from a high-speed video camera recording the dynamics of
the backlighted fluid particles.

of these two resonances is carried out by varying the height of the liquid column,
and a typical desirable resonant mode provides isolated three-dimensional acoustic
pressure nodes and antinodes near the cell axis of symmetry. Liquid drops which are
more compressible than the host liquid are driven toward and levitated near pressure
antinodes (Apfel 1976), and gas bubbles which are smaller (larger) than resonant
size are driven toward and trapped near pressure antinodes (nodes) (Eller 1968). The
bubble resonant size is that at which the volumetric bubble resonance frequency is
equal to that of the standing wave. This volumetric mode frequency ωR (the Minnaert
frequency) is approximately given by

ω2
R =

3γP0

ρR2
− 2σ

ρR3
, (2.1)

where γ is the ratio of the specific heats of the gas, P0 is the ambient hydrostatic
pressure, σ the surface tension, ρ is the liquid density and R the equilibrium bubble
radius. For the bubble sizes of interest in this study, the second term on the right-hand
side is small compared to the first term.

In this paper we report results obtained with both drops and bubbles, the latter
always larger than resonant size, and trapped slightly above a local pressure node.
An experimental study of the large-amplitude oscillations of drops levitated in air
and under the combined action of electric and ultrasonic fields has been reported
elsewhere (Trinh, Holt & Thiessen 1996).

Modulation of the acoustic radiation stresses acting on the interface has provided
the drive for the shape oscillations. This was primarily carried out through direct
modulation of the fundamental levitation standing wave, but the amplitude modula-



256 E. H. Trinh, D. B. Thiessen and R. G. Holt

(a) (b)

Figure 2. (a) Backlit image of a trapped 4.5 mm diameter air bubble in water. The structure faintly
seen at the north pole is high-frequency capillary waves excited through the Faraday instability on
the air–water interface. (b) Higher-resolution video frame of the capillary waves at the bubble north
pole. The waves have been recorded with a video camera with high-intensity short-duration pulsed
lighting.

tion of the third harmonic has also been implemented in order to provide a greater
stress on the individual fluid particles. For the amplitude modulation of the radiation
pressure, the voltage across the ultrasonic transducer, Vac, is given by

Vac = Vac0 [1 +M cos (ωmt)] cos (ωact) , (2.2)

where Vac0 is the amplitude of the carrier voltage at the frequency ωac = 2πfac
for the acoustic standing wave (fac = 22.5 kHz), M is the modulation index for
the amplitude modulation of the acoustic force at the frequency ωm. Because the
acoustic radiation force is proportional to the square of the acoustic pressure, this
force is therefore proportional to V 2

ac, and this amplitude modulation results in a time-
varying acoustic force at both the frequencies ωm and 2ωm. This results in a periodic
flattening of the drop or bubble by the acoustic force when the fluid particle diameter
is small compared with the ultrasonic wavelength. When the particle diameter is a
significant fraction of the ultrasonic wavelength, however, the periodic elongation of
the drop or bubble along the vertical axis can also be obtained through amplitude
modulation of the acoustic pressure. A static distortion of the drop or bubble can
also be induced by the ultrasonic levitation or trapping field as the size of the
fluid particle becomes a non-negligible fraction of the wavelength. Figure 2(a) shows
the unmodulated shape of a large air bubble of approximately 0.8 cm in diameter
trapped in a 22.9 kHz sound field. In addition to the shape asymmetry with respect
to the equator, one can also notice the presence of short-wavelength capillary waves
on the upper hemisphere of the trapped bubble. Figure 2(b) is a magnified image
obtained under short duration stroboscopic illumination and shows the capillary
waves in greater detail. The frequency of these waves has been determined to be
around 11 kHz, indicating that the generating mechanism is probably through the
Faraday instability (Holt & Trinh 1994). This has also been shown to induce resonant
shape oscillations for smaller bubbles (10–30 µm in diameter) which are initially
acoustically driven in the radial mode (Holt & Gaitan 1996). The presence of these
capillary waves and the fact that the equilibrium shape of the trapped bubbles is not
spherical both influence the characteristics of the shape oscillations. The details of
such effects are beyond the scope of this paper, however, but they will be addressed in



Drop and bubble nonlinear shape oscillations 257

Figure 3. Single video frames displaying the light scattered from a trapped air bubble containing
suspended tracer particles. A steady-state streaming flow can be observed within the air bubble. The
velocity distribution is highly non-uniform because the principal driving mechanism for streaming
appears to be the capillary waves at the bubble top surface.

a forthcoming low-gravity investigation to be carried out using a similar experimental
apparatus.

An acoustically induced steady-state convective flow field is also present in the gas
inside the trapped bubble as shown in figure 3. This time-exposure photograph of
both a trapped bubble and its immediate surrounding shows steady and oscillatory
circulation both inside and outside the bubble (in the air and in the liquid). The flows
have been visualized using incense smoke particles inside the bubble and polymer
particles suspended in the surrounding liquid. They are illuminated by a laser sheet,
and the scattered light is recorded by a video camera. The outer streaming in the
liquid has been documented previously and is expected, but the inner flow has not
been seen before and is under more detailed scrutiny. The results will be reported in
a later publication.

The driven and freely decaying shape oscillations of both drops and bubbles were
monitored by standard (30 frames/second) and high-speed (2000 frames/second)
video cameras. To facilitate the automated analysis of the drop or bubble shapes
from the digitized individual video frames, backlighting was selected as the primary
illumination technique. The high-contrast, dark contours in a bright background were
analysed with an edge-finding routine, and the experimental data were fitted into
axisymmetric shapes with the usual expansion in terms of the time-dependent surface
spherical harmonics.

The shape of the drop or bubble, described by R (θ, t) is expanded as

R (θ, t) = R0

[
1 +

l∗∑
l=2

cl (t)Pl(cos θ

]
, (2.3)

where R0 is the radius of the sphere of the same volume, Pl (cos θ) is the Legendre
polynomial of degree l, and cl (t)’s are the corresponding coefficients. Using this
method we can obtain the time series for each cl (t) for driven and freely decaying
shape oscillations. For the data described in this paper, we have limited ourselves to
l∗ = 6. A digitally analysed video frame contains up to a maximum of 320 × 240
pixels and in 256 levels of grey. Figure 4 shows a series of shapes recorded on still
video for a drop initially driven into the axisymmetric l = 3 mode and subsequently
exciting the non-axisymmetric l = 2 mode. This case is discussed in a later section
of this paper. Figure 5 shows the photographs of the extremum shapes of a drop
initially driven into the l = 6 mode and subsequently exciting the l = 3 mode. This
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Figure 4. Series of video single frames of a silicone oil drop in water initially driven into the
axisymmetric l = 3 mode. Non-axisymmetric l = 2 oscillations are gradually excited through
harmonic resonance. The initial axisymmetric three-lobed oscillations are coupled with oblate-prolate
shapes as shown on this view perpendicular to the original axis of symmetry. The series of five
pictures on the left depicts axisymmetric l = 3 mode shapes. The series of ten pictures on the right
shows shapes of superposed l = 3 and l = 2 oscillations.

case is also discussed in the following section. The illumination used for the drop
photographs is a combination of back and side lighting.

The materials used for these studies are silicone oil (Polydimethylsiloxanes) with a
kinematic viscosity of 2 cSt for the drops and distilled outgassed water for the host
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Figure 5. Series of video single frames showing the shapes of an initially axisymmetric l = 6
(top row) and the shapes of the superposed l = 6 and l = 3 shape modes (bottom row). The
l = 3 secondary oscillations are excited by the large-amplitude acoustically driven l = 6 mode.
Characteristic three-lobed configurations are seen superposed on the original six-lobed geometry.

liquid. The drop diameter ranged from 1.0 to 1.5 cm, and the ultrasonic frequencies
of the standing waves used to excite the shape oscillations were 22.5 and 66 kHz.

3. Experimental results
3.1. Drop shape oscillations

The first few driven resonant shape oscillations of drops immersed in a liquid host have
been previously observed by using ultrasonic radiation pressure (Marston & Apfel
1979; Trinh et al. 1982; Annamalai, Trinh & Wang 1985) and electric field drive
(Rhim, Elleman & Saffren 1982; Scott et al. 1990; Azuma, Yoshihara & Ohnishi
1989). Although the controlled excitation and measurement of the well-resolved and
independent resonant modes and the experimental evaluation of the weak nonlinear
characteristics of the fundamental quadrupole (oblate-prolate) mode has allowed
the validation of both the linear theory and predictions from nonlinear numerical
calculations (Tsamopoulos & Brown 1984), no data on resonant mode coupling have
yet been published. In this paper we report observations of the interaction between
resonant modes when their nominal resonant frequencies satisfy an approximate
integer multiple relationship. The strongest coupling has been found for a 2:1 ratio
where a mode is initially acoustically driven at high amplitude, and a lower-order mode
is subsequently excited at a sub-harmonic frequency due to nonlinear interaction.

3.1.1. Coupling between l = 3 and l = 2 modes

Figure 6 summarizes the experimental results for a 1.1 cm diameter silicone oil
drop in water. The videotape frames capturing the drop motion were digitized and
the drop contour on each frame was continuously fitted with 100 points. Assuming
axial symmetry, this drop boundary was decomposed into shapes associated with
Legendre polynomials. These coefficients (between c2 and c6 ) are plotted in figure 6.



260 E. H. Trinh, D. B. Thiessen and R. G. Holt

0.1

0

–0.1

–0.2

0 100 200 300 400 500

0.2

0.1

0

–0.1

–0.2
0 100 200 300 400 500

0.2

0.1

0

–0.1

–0.2
0 100 200 300 400 500

0.2

0.1

0

–0.1

–0.2
0 100 200 300 400 500

0.2

0.1

0

–0.1

–0.2
0 100 200 300 400 500

0 100 200 300 400 500

1.6

1.2

0.8

0.4

c2

c4

c6

c3

c5
V

ol
um

e

Time (frames) Time (frames)

Figure 6. Time-dependence of the first five Legendre coefficients of a 1.1 cm diameter silicone oil
drop levitated in water and initially driven into the axisymmetric l = 3 resonant mode of shape
oscillations. The sub-harmonic excitation of a non-axisymmetric l = 2 resonant mode is the salient
characteristic. A strong harmonic component can also be detected in the c4, c5, and c6 Legendre
coefficients.

The volume is calculated assuming axial symmetry, and is also plotted in order to
check the constant-volume restriction.

In this particular measurement, the drop was initially driven in the l = 3 axisym-
metric mode resonance (at 2.15 Hz) at large amplitude (20% of the drop diameter).
The steady-state oscillations are characteristically three-lobed and they can be viewed
along a horizontal view axis (see figure 4), while an oscillating circular cross-section
can be seen along the orthogonal vertical axis (symmetry axis). This is confirmed
by the plot of the volume which shows a constant value centred at 1.0. At about
150 frames, the amplitude of the l = 2 mode Legendre coefficient (c2) begins to
increase, and displays a sub-harmonic time-dependence at 1.07 Hz. These l = 2 mode
oscillations grow in amplitude at the expense of the l = 3 oscillations, but they are
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not axisymmetric along the vertical axis. Rather, they are aligned along a horizontal
direction normal to the symmetry axis. This is reflected by the deviation of the cal-
culated volume from unity. The acoustic shape oscillation drive is removed after 360
frames, and the decay of all the shape oscillation modes can be observed.

Although the assumption of axial symmetry is obviously violated as shown by
the apparent volume variations, we can nevertheless accurately identify the specific
coupled resonant modes through visual observations. The axisymmetric l = 3 three-
lobed oscillations (at 2.15 Hz) can be viewed along one axis while the drop cross-
section remains circular along the orthogonal view (along the symmetry axis). As
the l = 2 mode becomes excited, oblate-prolate oscillations (at 1.07 Hz) can be seen
along the orthogonal axis, and the previously three-lobed oscillations are modulated
by these oblate-prolate oscillations. Although the superposed oscillations are no
longer axisymmetric, the composite motion can still be visually decomposed into two
separate components with separate symmetry axes and different, but harmonically
related frequencies.

This combination of visual analysis of the video data with the quantitative analysis
of the digitized images is very effective at the low oscillation frequencies (1–5 Hz)
characteristic of the relatively large drops used in this study.

One might note that according to linear theory results (Marston 1980), the ratio
of the small-amplitude resonance frequencies ω3/ω2 is near 1.82 for the current
conditions and for axisymmetric modes (the theoretical value for the l = 2 mode is
1.18 Hz). This was found to be in closer agreement with experimental results than
the corresponding theoretical value of 2 for the inviscid case (Trinh et al. 1982).
We, therefore, use Marston’s theoretical values for the resonant mode frequencies
throughout this paper, keeping in mind that they strictly only apply to axisymmetric
small-amplitude oscillations.

The lower frequency value corresponding to the sub-harmonic coupling observed
here (1.07 Hz), could be explained by the detuning due to viscous effects, or it might
correspond to a lower resonance frequency for the non-axisymmetric mode which
has been excited in this particular case. Viscous dissipation decreases the quality
factor (or Q) of resonant systems and resonant oscillations can be driven with a
significant amount of detuning. In the present case, the typical Q of a drop in water
is on the order of 10 for the fundamental (l = 2) and least-damped mode, and
the observed detuning of 10% would not exclude a coupling mechanism based on
harmonic resonance.

The removal of the degeneracy for resonant drop shape oscillations has been
observed experimentally: three different l = 2 modes can be driven at slightly different
frequencies grouped around the theoretically predicted resonance. An analysis of the
removal of the degeneracy by a static shape deformation is also available in the
literature (Suryanarayana & Bayazitoglu 1991). In previously reported experimental
results on drops levitated in air (Trinh et al. 1996), three separate l = 2 modes were
also observed, and a non-axisymmetric mode was found to have the lowest frequency.
If the same is true for this case, the frequency ratio of the axisymmetric l = 3 mode
to the non-axisymmetric l = 2 mode would be closer to 2.

In figure 7 are plots of Fourier transforms of the time-dependent Legendre coef-
ficients, which show the frequency spectrum for each Legendre shape. The Fourier
transforms were calculated using all the data shown in the time-dependence plots.
The first obvious characteristic is the presence of the initial driven frequency 2.15 Hz
of the l = 3 mode on all of the spectra for the corresponding Legendre coefficients.
This indicates that large-amplitude oscillations in an initially pure mode will drive
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Figure 7. Fourier spectra of the times series shown in figure 6. Both sub-harmonic and harmonic
components are prominently displayed. All the data points shown in the time series have been used
in the Fourier transform operation.

motion which has other characteristic higher-order mode shapes all having the same
initial driven frequency. This was predicted by Feng & Beard (1990, 1991) when
they considered the case of electrically driven oscillations of charged drops in a gas.
Interestingly, the sub-harmonic frequency strongly appears only in the l = 2 and
somewhat weakly in the l = 5 mode spectra. Another salient characteristic is the
excitation of a near second-harmonic component at 4.2 Hz corresponding to the
l = 5 mode oscillations. The theoretical l = 5 mode linear resonance frequency is
roughly twice that of the l = 3 mode (4.3 Hz).

Also significant is the fact that we have not been able to get a strong coupling
in the reverse direction, i.e. it has not been possible to drive the l = 3 mode at
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its characteristic resonance frequency by acoustically exciting the axisymmetric or
non-axisymmetric l = 2 oscillations. Large-amplitude driven l = 2 motion generates
l = 3,4,5,6 shapes at its driven frequency as well as its harmonics. For example, the
l = 3 oscillatory shapes have the frequency of the driven l = 2 mode, and l = 4
oscillations are found to have frequency components at f(l = 2) and at 2f(l = 2)
instead of 3f(l = 2) as prescribed by linear theory. This appears to agree with
previously published results based on a nonlinear analysis of the decay of drops
released from a nozzle (Becker, Hiller & Kowalewski 1994).

These results can be summarized as follows: (i) large-amplitude acoustically driven
resonant oscillations in a pure mode can sub-harmonically excite a corresponding
resonant mode having different symmetry characteristics; (ii) they generate the first
few of the Legendre axisymmetric shapes at the same driving frequency; and (iii) they
can also drive higher-harmonic resonant mode oscillations (second harmonic in this
case) as predicted by Tsamopoulos & Brown (1984).

3.1.2. Coupling between the l = 6 and l = 3 modes

In this second case, a 1.5 cm diameter silicone oil drop was levitated in distilled
water and driven into resonant l = 6 mode oscillations (see figure 5). Figure 8 shows
the initial driven motion of the c6 Legendre coefficient at 6.7 Hz, the rising amplitude
of the c3 coefficient, and the steady driven l = 3 oscillations at the sub-harmonic
frequency of 3.4 Hz. A slight non-axisymmetric component at the same sub-harmonic
frequency is detected in the plot of the calculated volume as a function of time. Also
observable is the rising prominence of the sub-harmonic frequency (3.4 Hz) in the
time-dependence of both the c2 and c4 coefficients. Figure 9, showing the plots of the
Fourier transform of the Legendre coefficients, confirms the presence of the driving
and sub-harmonic frequencies. The second-harmonic frequency component is not
apparent in this case because the resonant mode response at such a high frequency
(13.4 Hz) is highly damped by viscosity.

One must note, however, that the calculated small-amplitude normal mode fre-
quency ratio ω6/ω3 is approximately equal to 2.5, not 2.0, i.e the theoretical resonance
frequency for the l = 3 mode is only 2.7 Hz. In this case, the observed sub-harmonic
frequency of the secondary (nonlinearly driven) mode is higher than the theoretical
small-amplitude resonant l = 3 mode frequency. Thus, there appears to be a signifi-
cant degree of detuning in the sub-harmonic drive of the l = 3 characteristic mode.
This is not surprising owing to the increased viscous damping associated with the
higher-order modes. In addition, because of the soft nonlinearity of large-amplitude
shape oscillations, the actual frequency of maximum response for the l = 6 mode is
shifted to a value lower than the resonance frequency predicted by the linear theory.
The experimental frequency ratio would also be smaller than 2.5 when previous ex-
perimental results and theoretical predictions are taken into account (Tsamopoulos
& Brown 1983; Trinh & Wang 1982).

Here again, harmonic resonance appears to be the logical explanation for the
observed drop behaviour, and sub-harmonic coupling is the dominant mechanism
which can also be logically explained by the influence of viscous dissipation. In this
case, the l = 3 mode did not transfer energy to the non-axisymmetric l = 2 mode as
observed in the previously described data. Instead, the axisymmetric l = 2 mode is
initially excited very weakly by the acoustically driven l = 6 oscillations, and more
significantly by the nonlinearly driven l = 3 mode. The influence of a driven mode
appears clearly to be substantial for neighbouring ones, but is less apparent for more
distant modes. The l = 2, 4, and 5 modes all display an initial time dependence at
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Figure 8. Time-dependence of the first five Legendre coefficients for a 1.5 cm diameter silicone oil
drop levitated in water and initially driven into the l = 6 resonant mode of shape oscillations.The
sub-harmonic coupling leads to the excitation of the resonant l = 3 mode accompanied by a very
slight decrease in the amplitude of the response in the l = 6 mode.

the driven l = 6 mode frequency, but the l = 2 and 4 modes time response becomes
dominated by the l = 3 mode as the latter rises to larger amplitude. Meanwhile, its
effect on l = 5 and l = 6 modes is relatively minor.

3.1.3. Coupling between the l = 4 and l = 2 modes

In this third case, a 1.2 cm diameter silicone oil drop in distilled water was initially
driven into resonant l = 4 axisymmetric oscillations at 4.6 Hz (see the c4 coefficient
plotted as a function of time in figure 10). The fairly large amplitude driven oscillations
in the l = 4 mode appear to excite even numbered oscillations (l = 2 and l = 6) at
the same frequency, but they do not appreciably induce odd-numbered mode motion
(l = 3 and l = 5). This is in agreement with predicted behaviour (Feng & Beard 1990).
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Figure 9. Fourier transforms of the data in figure 8 prominently display that sub-resonant coupling.
All the data points shown in the time series have been used in the Fourier transform operation.

The apparent contradiction raised by the cases discussed in the preceding sections
could be rationalized by invoking harmonic resonance. The time-dependence of the
l = 2 mode motion is a superposition of two frequencies: the quadrupole oscillations
at 2.3 Hz and the driving frequency of the l = 4 mode at 4.6 Hz. Also note that
the l = 2 mode oscillations are about a substantially oblate equilibrium configuration
(the value of the c2 coefficient is negative throughout the shape oscillations).

According to linear theory for spherical drops, the ratio of the l = 4 to l = 2 mode
frequencies is about 2.6, although the actual frequency ratio for large-amplitude
oscillations will be lower for the same reasons mentioned in the preceding case.
The theoretical resonance frequency for the l = 2 mode is 1.77 Hz. The amount
of detuning is thus even larger than in the preceding case, and it could explain
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Figure 10. Time-dependence of the Legendre coefficients for a 1.2 cm diameter silicone oil drop lev-
itated in water and initially driven into the l = 4 resonant mode of shape oscillations. Sub-resonant
excitation drives the l = 2 mode which responds at a combination of the driving and sub-harmonic
frequencies.

the relatively weaker observed coupling. Although sub-harmonic resonance is still
observed, the harmonic coupling between these two particular modes is weaker than
in the preceding two cases.

3.2. Bubble shape oscillations

Shape oscillations have been experimentally studied in the past in the context of the
shape stability of radially oscillating small bubbles: as the amplitude of the volume
oscillations of bubbles trapped in an ultrasonic standing wave increases, resonant
surface standing waves (shape oscillations) are parametrically excited through the
Faraday instability mechanism (Strasberg & Benjamin 1958; Eller & Crum 1970;
Benjamin & Ellis 1990; Feng & Leal 1997). Other workers have also driven these
shape modes directly by mechanically restraining bubbles in a wire loop and exciting
an acoustic travelling wave in the kHz frequency range (Francescutto & Nabergoj
1978). Recent advances in the technique for ultrasonically trapping larger, millimetre-
size bubbles have permitted the detailed analysis of certain aspects of the damping
of their shape oscillatory dynamics (Asaki et al. 1993; Asaki, Thiessen & Marston
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Figure 11. Time dependence of the Legendre coefficients for a 0.42 cm diameter air bubble trapped
in water. The bubble is initially driven into the l = 2 mode and the oscillations are allowed to
freely decay. Harmonics of the driving frequency can be detected, but an obvious characteristic is
the presence of the driving frequency in the response of all the Legendre modes.

1995). In this paper, we report some quantitative measurements of the characteristics
of large-amplitude shape oscillations of air bubbles several millimetres in diameter
and trapped in distilled water.

3.2.1. Shape oscillations of air bubbles acoustically trapped in water

Air bubbles trapped by the 22.5 kHz standing wave were initially driven in one
of the resonant shape modes and the subsequent freely decaying oscillations were
analysed using modal decomposition in the same manner as described in previous
sections for the case of drops. The initial oscillation amplitude was generally on
the order of, or larger than, 10% of the equivalent equilibrium bubble radius. Our
attention was mainly focused on the excitation of neighbouring resonant modes. The
experimental time resolution for all the data sets presented below was 1 ms.

Figure 11 shows plots of the first five Legendre coefficients and of the volume
as a function of time for a 0.42 cm diameter air bubble initially driven into the
axisymmetric l = 2 resonant mode (49.5 Hz). The most notable higher-mode excitation
at the appropriate characteristic resonance frequency is revealed by the response of
the l = 3 mode. Dual frequency response is detected during both the driven and
free-decay phases: both the driving frequency and roughly double that frequency are
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Figure 12. For caption see facing page.

clearly visible in the c3 time response curve. The evidence also shows that the l = 4,
and to a much smaller extent the l = 5 and l = 6 shapes, were also excited at the
same l = 2 frequency during the acoustically driven phase.

Figure 12 displays plots of the Legendre coefficients as a function of time for
a 0.41 cm diameter air bubble initially driven into the axisymmetric l = 3 mode
(83 Hz). As shown before, all the resonant shapes are excited at the single driving
frequency in the steady-state regime. A characteristic nearly single frequency decay
is measured for the l = 2 mode as soon as the acoustic drive is terminated, while
both the l = 3 and l = 4 modes display a superposition of the l = 2 and of their
characteristic normal mode free-decay frequencies. This is better shown in figure 13
where the Fourier transform of the time-series data in the free-decay region was
performed. The lowest-order (l = 2) and the next higher (l = 4) modes frequencies
are not harmonically related to the excitation frequency, the experimental results for
the mode frequency ratios are ω3/ω2 = 1.71 and ω4/ω2 = 2.43. These values are
lower than the linear theoretical predictions for ideal spherical bubbles of 1.82 and
2.74 respectively.

Figure 13 reports similar results except that the initial acoustic drive was for the
l = 4 mode (136.5 Hz). Once again, the l = 2 natural free-decay frequency is present
in all the Legendre coefficient time series, and each characteristic mode frequency
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Figure 12. Time-dependence and FFT of the Legendre coefficients for a 0.41 cm diameter air
bubble trapped in water and initially driven into its l = 3 resonant mode. All the modes respond
at the forcing frequency during the driven phase, but the characteristic frequencies of the normal
modes are recovered during the free-decay phase, although they are modulated by the least-damped
l = 2 mode oscillations.

is generated in the free-decay phase. The freely decaying oscillations of the higher
modes are thus modulated by the least-damped natural oscillations in the fundamental
quadrupole mode.

4. Discussion and summary
Driven large-amplitude shape oscillations responses of drops and freely decaying

oscillations of bubbles have been investigated in this work. Ample evidence for sub-
harmonically and harmonically induced mode coupling has been documented for
both drops and bubbles. This is at least in partial agreement with the theoretical
predictions of Tsamopoulos & Brown (1984).

For drops, a significant result described here is the uncovering of an efficient sub-
harmonic excitation of a resonant mode concurrent with the usual higher-harmonic
excitation. The former is more efficient due to the increasingly greater viscous damping
of shape oscillations with higher mode numbers. A certain degree of detuning has
also been found to be acceptable for subharmonic excitation: exact matching of the
natural resonance frequency of this secondary mode to half the drive frequency is not
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Figure 13. Time-dependence of the Legendre coefficients for an air bubble driven in its l = 4
resonant mode. All modal responses are at the driving frequency in the initial phase, but the
characteristic modal frequencies are again recovered in the free-decay portion.

required. Also significant is the fact that a mode of different symmetry characteristics
can be excited as long as its resonance frequency is close to half the drive frequency.
Finally, all shape oscillation modes are driven at the excitation frequency, and it
appears that even-numbered modes do not easily couple to odd-numbered ones,
while odd-numbered modes can excite even modes. This is in agreement with previous
theoretical work describing the dynamics of electrostatically levitated charged drops
(Tsamopoulos & Brown 1984; Feng & Beard 1990, 1991).

In the case of bubbles, it is clear that the free-decay dynamics are dominated by
the least-damped mode, regardless of the nature of the original driven mode. As
is the case for drops, all the modes are driven at the excitation frequency, but the
bubbles higher-order modes are found to freely decay at their characteristic resonant
frequencies superposed on the fundamental mode frequency. The deformed, semi-
oblate shape of these trapped bubbles is not symmetrical with respect to the equator.
This non-spherical equilibrium shape could explain why the experimental ratios for
the resonant mode frequencies are lower than the predictions from linear theory.

We have not been able to obtain direct mode-coupling data in the acoustically
driven bubbles similar to those obtained for drops. This is perhaps due to our desire
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to keep the acoustic field intensity low enough to avoid the excitation of high-frequency
capillary waves on the bubble surface. The limitation of this particular experimental
approach is thus more restricting in the case of bubbles. However, other evidence
of mode coupling is clearer for the case of bubbles in the free-decay phase: all the
appropriate resonant frequency components were detected regardless of which mode
was initially excited. We believe that this set of data should be even more reliable
since it is not influenced by the way the acoustic field modulates the drop shape.

Because of the need for levitation (or trapping) the fluid particles are not totally
free. This is reflected in the oblate equilibrium shapes of the relatively large air
bubbles studied here and in the outer-liquid streaming flows. The drops and bubbles
are thus not completely free of external influence since they are constrained to remain
at a fixed location by the sound field. It has been theorized that the equilibrium shape
of the drop or bubble also plays a significant role in the mode coupling processes
involved at large-amplitude oscillations. This may be intuitively understood once the
shifting of the resonance frequencies by static shape deformation and removal of mode
degeneracy is taken into account. The performance of the same experiments in low
gravity where all positioning forces are turned off during the free-decay phase would
provide results devoid of field interference, and it might provide a direct quantitative
assessment of this bias.

Previous theoretical works dealing with weakly viscous drops have suggested a
significant influence of viscosity on nonlinear mode coupling characteristics (Basaran
1992; Becker et al. 1993). The results reported here point to an obvious bias toward
the secondary excitation of less-damped and harmonically related resonant modes
during the active excitation of a primary mode at large amplitude. The apparent
significant degree of detuning observed here also suggests the influence of viscous
effects, although this may also emphasize the effect of the soft nonlinearity in the
resonance frequencies.

This work was carried out at the Jet Propulsion Laboratory, California Institute of
Technology under contract with the Microgravity Research Division of the National
Aeronautics and Space Administration. We thank the referees for many helpful and
insightful suggestions.
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